metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[diaquabis(μ_3 -1*H*-benzimidazole-5,6-dicarboxylato- $\kappa^4 N^3$: $O^5, O^{5'}:O^6$)bis-(μ_2 -1*H*,3*H*-benzimidazolium-5,6dicarboxylato- $\kappa^3 O^5, O^{5'}:O^6$)digadolinium(III)]

Jie-Xuan Huang,^a Yi-Yi Wu,^a Chun-De Huang,^a Qing-Yang Lian^a and Rong-Hua Zeng^{a,b}*

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and ^bKey Laboratory of Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: zrh321@yahoo.com.cn

Received 19 October 2009; accepted 5 November 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.020; wR factor = 0.049; data-to-parameter ratio = 10.7.

In the title complex, $[Gd_2(C_9H_4N_2O_4)_2(C_9H_5N_2O_4)_2(H_2O)_2]_n$, two of the benzimidazole-5,6-dicarboxylate ligands are protonated at the imidazole groups. Each Gd^{III} ion is coordinated by six O atoms and one N atom from five ligands and one water molecule, displaying a distorted bicapped trigonal-prismatic geometry. The Gd^{III} ions are linked by the carboxylate groups and imidazole N atoms, forming a layer parallel to (001). These layers are further connected by O- $H \cdots O$ and N- $H \cdots O$ hydrogen bonds into a three-dimensional supramolecular network.

Related literature

For related structures, see: Gao *et al.* (2008); Lo *et al.* (2007); Wei *et al.* (2008); Yao *et al.* (2008).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Gd}_2(\mathrm{C}_9\mathrm{H}_4\mathrm{N}_2\mathrm{O}_4)_2(\mathrm{C}_9\mathrm{H}_5\mathrm{N}_2\mathrm{O}_4)_2\text{-}\\ & (\mathrm{H}_2\mathrm{O})_2]\\ & M_r = 1169.12\\ & \mathrm{Monoclinic}, P2_1/c\\ & a = 18.7856 \ (11) \ \mathrm{\mathring{A}}\\ & b = 12.7745 \ (7) \ \mathrm{\mathring{A}}\\ & c = 15.4776 \ (9) \ \mathrm{\mathring{A}} \end{split}$$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.448, T_{\rm max} = 0.501$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.049$ S = 1.086338 reflections 595 parameters 13 restraints $V = 3532.3 \text{ (3) } \text{Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 3.82 \text{ mm}^{-1}$ T = 296 K $0.25 \times 0.24 \times 0.21 \text{ mm}$

 $\beta = 108.010 \ (1)^{\circ}$

24827 measured reflections 6338 independent reflections 5929 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.63\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.55\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1

Selected bond lengths (Å).

Gd1-01	2.338 (2)	Gd2-O9	2.312 (2)
Gd1-O2	2.526 (2)	Gd2-O11 ⁱⁱⁱ	2.539 (2)
Gd1-O3 ⁱ	2.350 (2)	Gd2-O12 ⁱⁱⁱ	2.342 (2)
Gd1-O5 ⁱⁱ	2.461 (2)	Gd2-O13 ^{iv}	2.267 (2)
Gd1-O6 ⁱⁱ	2.499 (2)	Gd2-O15	2.449 (2)
Gd1-O8	2.314 (2)	Gd2-O16	2.520 (2)
Gd1-N6	2.617 (3)	Gd2-N1 ⁱⁱⁱ	2.612 (3)
Gd1 - O1W	2.374 (2)	Gd2-O2W	2.384 (2)

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

	•		
motal	-organic	compound	C
incla	-Vi samu	COMPOUND	13
	0		

Table 2		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1W\cdots O7^{v}$	0.84	1.80	2.629 (3)	167
$O1W-H2W\cdots O4^{i}$	0.82	1.92	2.670 (3)	153
O2W−H3W···O10 ^{vi}	0.86	1.74	2.590 (3)	172
O2W-H4WAO15	0.82	2.14	2.716 (5)	127
$O2W-H4WB\cdots O2W^{vi}$	0.82	1.91	2.723 (4)	170
$N2-H2A\cdots O14^{vii}$	0.82 (4)	1.94 (4)	2.742 (3)	169 (3)
$N3-H3A\cdotsO10^{vii}$	0.81 (4)	1.94 (4)	2.731 (4)	166 (4)
$N4-H4A\cdotsO16$	0.84 (4)	1.97 (4)	2.801 (4)	170 (4)
$N5-H5A\cdots O4^{v}$	0.83 (4)	1.96 (4)	2.772 (3)	165 (4)
$N7-H7A\cdots O5$	0.77 (4)	2.08 (4)	2.845 (3)	171 (4)
N8-H8 A ···O7 ^{viii}	0.80 (4)	1.95 (4)	2.747 (3)	172 (4)

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) -x + 1, -y, -z; (vii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (viii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors acknowledge the Students' Extracurricular Scientific Research Projects of South China Normal University and the Key Laboratory of Electrochemical Technology of Energy Storage and Power Generation in Guangdong Universities for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2247).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2007). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087–2089.

Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.

Acta Cryst. (2009). E65, m1566-m1567 [doi:10.1107/S1600536809046819]

Poly[diaquabis(μ_3 -1*H*-benzimidazole-5,6-dicarboxylato- $\kappa^4 N^3$: O^5 , O^5' : O^6)bis(μ_2 -1*H*,3*H*-benzim-idazolium-5,6-dicarboxylato- $\kappa^3 O^5$, O^5' : O^6)digadolinium(III)]

J.-X. Huang, Y.-Y. Wu, C.-D. Huang, Q.-Y. Lian and R.-H. Zeng

Comment

In recent years, research on coordination polymers has made considerable progress in the fields of supramolecular chemistry and crystal engineering, because of their intriguing structural motifs and functional properties, such as molecular adsorption, magnetism and luminescence. In general, the structural motifs of these hybrid compounds are closely related to the geometries of metal centers and the number of coordination sites provided by multidentate ligands. On the other hand, the supramolecular interactions such as hydrogen-bonding, π - π stacking and metallophilic interactions also play the key roles in the recognition process forming final three-dimensional architectures. As a building block, benzimidazole-5,6-dicarboxylic acid is a good ligand with multifunctional coordination sites providing intriguing architectures and topologies (Gao *et al.*, 2008; Lo *et al.*, 2007; Wei *et al.*, 2008; Yao *et al.*, 2008). Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

In the title compound (Fig. 1), two of the benzimidazole-5,6-dicarboxylate ligands are protonated at the imidazole groups. Each Gd^{III} ion is eight-coordinated by six O atoms one N atom from five ligands and one water molecule. The coordination geometry can be described as distorted bicapped trigonal prismatic, with Gd—O distances and O—Gd—O angles ranging from 2.267 (2) to 2.539 (2) Å (Table 1) and 52.14 (7) to 156.82 (8)°, respectively. The benzimidazole-5,6-dicarboxylate ligands acting as bridging ligands link the Gd^{III} centers into a layer parallel to the (0 0 1) plane. O—H…O and N—H…O hydrogen bonds (Table 2) connect the layers into a three-dimensional supramolecular motif (Fig. 2). Within the layer, the π - π stacking interactions between neighboring imidazole and benzene rings [centroid–centroid distances = 3.629 (3), 3.755 (4), 3.656 (3) and 3.606 (3) Å] enhance the stability of the crystal structure.

Experimental

A mixture of Gd_2O_3 (0.363 g, 1 mmol), benzimidazole-5,6-dicarboxylic acid (0.206 g, 1 mmol), water (10 ml) in the presence of HClO₄ (0.039 g, 0.385 mmol) was stirred vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 3 d, and then cooled to room temperature at 5 K h⁻¹. The colorless block crystals were obtained.

Refinement

Water H atoms were tentatively located in difference Fourier maps and fixed in refinements, with $U_{iso}(H) = 1.5U_{eq}(O)$. One of the H atoms of O2W is disordered over two sites (O4WA and O4WB), each with an occupancy factor of 0.5. H atoms on N atoms were tentatively located in difference Fourier maps and refined with distance restraints of N—H = 0.82 (1) Å and with $U_{iso}(H) = 1.2U_{eq}(N)$. H atoms attached to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -1/2+y, 1/2-z; (ii) -x, 1/2+y, 1/2-z; (iii) 1-x, -1/2+y, 1/2-z; (iv) 1-x, 1/2+y, 1/2-z.]

Fig. 2. A view of the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.

Poly[diaquabis(μ_3 -1*H*-benzimidazole-5,6-dicarboxylato- $\kappa^4 N^3$: O^5, O^5 ': O^6)bis(μ_2 - 1*H*,3*H*-benzimidazolium-5,6-dicarboxylato- $\kappa^3 O^5, O^5$ ': O^6)digadolinium(III)]

Crystal data	
$[Gd_2(C_9H_4N_2O_4)_2(C_9H_5N_2O_4)_2(H_2O)_2]$	$F_{000} = 2264$
$M_r = 1169.12$	$D_{\rm x} = 2.198 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 7234 reflections
a = 18.7856 (11) Å	$\theta = 2.6 - 28.2^{\circ}$
b = 12.7745 (7) Å	$\mu = 3.82 \text{ mm}^{-1}$
c = 15.4776 (9) Å	T = 296 K
$\beta = 108.010 \ (1)^{\circ}$	Block, colorless
$V = 3532.3 (3) \text{ Å}^3$	$0.25\times0.24\times0.21~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	6338 independent reflections
Radiation source: fine-focus sealed tube	5929 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 296 K	$\theta_{\text{max}} = 25.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -21 \rightarrow 22$
$T_{\min} = 0.448, T_{\max} = 0.501$	$k = -15 \rightarrow 15$
24827 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.020$	H atoms treated by a mixture of

independent and constrained refinement

$wR(F^2) = 0.049$	$w = 1/[\sigma^2(F_o^2) + (0.021P)^2 + 3.3986P]$
	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} = 0.002$
6338 reflections	$\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$
595 parameters	$\Delta \rho_{min} = -0.55 \text{ e} \text{ Å}^{-3}$
13 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

											-	
Fractional	atomic	coordinates	and iso	tronic c	n er	mivalent	isotroi	nic dis	nlacement	narameters	$(Å^2$)
i i actionat	aiomic	coordinates	ana isoi	ropic o	n cy	fuivaicni	1501101	sie aus	pracement	parameters	(11)	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Gd1	0.028568 (8)	0.296570 (11)	0.225244 (9)	0.01343 (5)	
Gd2	0.524307 (8)	-0.054993 (10)	0.209686 (9)	0.01317 (5)	
N6	0.10953 (14)	0.1586 (2)	0.17264 (18)	0.0208 (6)	
N5	0.12241 (15)	0.0250 (2)	0.08627 (19)	0.0251 (6)	
H5A	0.111 (2)	-0.029 (3)	0.056 (2)	0.030*	
C23	0.07832 (18)	0.0751 (2)	0.1265 (2)	0.0218 (7)	
H23	0.0302	0.0529	0.1222	0.026*	
C25	0.24026 (17)	0.2316 (2)	0.1949 (2)	0.0220 (7)	
H25	0.2367	0.2863	0.2331	0.026*	
C21	0.25303 (17)	0.0637 (2)	0.0817 (2)	0.0215 (7)	
H21	0.2569	0.0077	0.0449	0.026*	
C24	0.18074 (16)	0.1631 (2)	0.1607 (2)	0.0181 (6)	
C22	0.18850 (17)	0.0794 (2)	0.1059 (2)	0.0197 (6)	
C20	0.31133 (16)	0.1340 (2)	0.11398 (19)	0.0166 (6)	
C26	0.30518 (17)	0.2172 (2)	0.1711 (2)	0.0178 (6)	
N3	0.36219 (16)	0.1575 (2)	0.4264 (2)	0.0312 (7)	
H3A	0.375 (2)	0.212 (3)	0.453 (3)	0.037*	
C13	0.28840 (17)	0.0294 (2)	0.3540 (2)	0.0199 (7)	
N4	0.35934 (15)	0.0200 (2)	0.3445 (2)	0.0256 (6)	
H4A	0.372 (2)	-0.029 (3)	0.316 (2)	0.031*	
C15	0.29033 (17)	0.1190 (2)	0.4058 (2)	0.0195 (6)	
C14	0.40105 (19)	0.0970 (3)	0.3890 (2)	0.0334 (8)	
H14	0.4511	0.1073	0.3934	0.040*	
C27	0.36712 (17)	0.2947 (2)	0.2069 (2)	0.0207 (7)	
C19	0.38033 (17)	0.1168 (2)	0.0861 (2)	0.0181 (6)	
011	0.41746 (14)	0.30726 (19)	0.17120 (17)	0.0342 (6)	
O10	0.37957 (14)	0.15189 (19)	0.01034 (16)	0.0338 (6)	
C17	0.16278 (17)	0.0978 (2)	0.39339 (19)	0.0163 (6)	
C12	0.22389 (17)	-0.0299 (2)	0.3229 (2)	0.0206 (7)	
H12	0.2230	-0.0912	0.2902	0.025*	
C16	0.22774 (17)	0.1551 (2)	0.4263 (2)	0.0199 (7)	
H16	0.2295	0.2153	0.4607	0.024*	
C11	0.16054 (17)	0.0050 (2)	0.3421 (2)	0.0177 (6)	
C10	0.08996 (17)	-0.0570 (2)	0.3073 (2)	0.0185 (7)	
C18	0.09517 (16)	0.1407 (2)	0.41501 (19)	0.0161 (6)	

08	0.05302 (12)	0.20217 (15)	0.35883 (14)	0.0207 (5)
O7	0.08767 (13)	0.11675 (18)	0.48980 (14)	0.0269 (5)
05	0.08938 (12)	-0.13723 (16)	0.25772 (16)	0.0266 (5)
O6	0.03295 (12)	-0.03134 (16)	0.32721 (15)	0.0246 (5)
012	0.36722 (13)	0.3474 (2)	0.27665 (18)	0.0391 (7)
C36	0.40339 (17)	-0.1991 (2)	0.1826 (2)	0.0185 (6)
C33	0.20968 (17)	-0.2999 (2)	0.1476 (2)	0.0192 (6)
C35	0.33593 (17)	-0.2677 (2)	0.1548 (2)	0.0175 (6)
C34	0.27150 (17)	-0.2345 (2)	0.1727 (2)	0.0200 (7)
H34	0.2699	-0.1705	0.2006	0.024*
O16	0.40712 (12)	-0.12307 (16)	0.23682 (15)	0.0246 (5)
015	0.45572 (13)	-0.21597 (18)	0.15068 (17)	0.0320 (6)
09	0.43302 (13)	0.06471 (18)	0.13734 (16)	0.0294 (5)
N7	0.14022 (15)	-0.2953 (2)	0.16138 (19)	0.0242 (6)
H7A	0.127 (2)	-0.248 (3)	0.184 (2)	0.029*
C28	0.40817 (17)	-0.4085 (2)	0.09601 (19)	0.0163 (6)
C29	0.33774 (16)	-0.3652 (2)	0.11096 (19)	0.0159 (6)
C32	0.10256 (17)	-0.3811 (3)	0.1275 (2)	0.0233 (7)
H32	0.0547	-0.3968	0.1292	0.028*
O14	0.41716 (12)	-0.40122 (17)	0.02045 (14)	0.0237 (5)
N8	0.14248 (15)	-0.4412 (2)	0.09098 (19)	0.0219 (6)
H8A	0.126 (2)	-0.495 (3)	0.066 (2)	0.026*
C31	0.21123 (16)	-0.3943 (2)	0.1031 (2)	0.0168 (6)
C30	0.27505 (17)	-0.4281 (2)	0.0840 (2)	0.0192 (6)
H30	0.2755	-0.4911	0.0539	0.023*
C1	0.13784 (17)	0.4457 (2)	0.3037 (2)	0.0188 (7)
C2	0.19826 (17)	0.5268 (2)	0.3348 (2)	0.0176 (6)
02	0.09162 (12)	0.42965 (17)	0.34523 (15)	0.0249 (5)
01	0.13579 (12)	0.39355 (17)	0.23230 (16)	0.0287 (5)
C8	0.18820 (16)	0.6163 (2)	0.38430 (19)	0.0158 (6)
C7	0.24484 (17)	0.6887 (2)	0.4144 (2)	0.0185 (6)
H7	0.2389	0.7474	0.4471	0.022*
C4	0.32222 (16)	0.5828 (2)	0.3467 (2)	0.0175 (6)
C6	0.31138 (16)	0.6714 (2)	0.39437 (19)	0.0172 (6)
C3	0.26477 (16)	0.5098 (2)	0.3167 (2)	0.0193 (7)
H3	0.2711	0.4506	0.2849	0.023*
N1	0.39340 (14)	0.5868 (2)	0.33531 (17)	0.0190 (5)
N2	0.37599 (15)	0.7294 (2)	0.41004 (18)	0.0217 (6)
H2A	0.385 (2)	0.785 (3)	0.437 (2)	0.026*
C5	0.42138 (17)	0.6759 (2)	0.3735 (2)	0.0208 (7)
H5	0.4685	0.6999	0.3752	0.025*
C9	0.11320 (17)	0.6424 (2)	0.3956 (2)	0.0165 (6)
O4	0.10804 (12)	0.64817 (17)	0.47426 (14)	0.0242 (5)
O13	0.45307 (12)	-0.45613 (17)	0.16304 (14)	0.0247 (5)
O3	0.06077 (11)	0.66278 (16)	0.32358 (14)	0.0203 (5)
O1W	-0.00880 (13)	0.30447 (17)	0.06416 (14)	0.0264 (5)
H1W	0.0184	0.3242	0.0331	0.040*
H2W	-0.0314	0.2519	0.0407	0.040*
O2W	0.51762 (14)	-0.0852 (2)	0.05540 (15)	0.0346 (6)

H3W	0.5544	-0.1080	0.0390	0.052*	
H4WA	0.4879	-0.1341	0.0480	0.052*	0.50
H4WB	0.5025	-0.0331	0.0237	0.052*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gd1	0.01015 (8)	0.01374 (8)	0.01696 (8)	-0.00059 (5)	0.00501 (6)	0.00056 (5)
Gd2	0.01062 (8)	0.01412 (8)	0.01541 (8)	-0.00007 (5)	0.00497 (6)	-0.00022 (5)
N6	0.0124 (13)	0.0236 (14)	0.0276 (14)	-0.0025 (11)	0.0079 (11)	-0.0044 (11)
N5	0.0183 (15)	0.0242 (14)	0.0323 (16)	-0.0062 (12)	0.0071 (12)	-0.0130 (12)
C23	0.0146 (16)	0.0244 (16)	0.0278 (17)	-0.0023 (13)	0.0084 (14)	-0.0022 (13)
C25	0.0183 (17)	0.0186 (15)	0.0294 (17)	-0.0016 (13)	0.0077 (14)	-0.0101 (13)
C21	0.0188 (17)	0.0214 (16)	0.0252 (17)	-0.0004 (13)	0.0080 (14)	-0.0090 (13)
C24	0.0115 (15)	0.0204 (15)	0.0233 (16)	0.0007 (12)	0.0067 (12)	-0.0028 (12)
C22	0.0152 (16)	0.0202 (15)	0.0232 (16)	-0.0026 (12)	0.0052 (13)	-0.0044 (13)
C20	0.0123 (15)	0.0210 (15)	0.0155 (14)	0.0035 (12)	0.0029 (12)	0.0036 (12)
C26	0.0141 (16)	0.0166 (15)	0.0235 (16)	-0.0007 (12)	0.0067 (13)	-0.0023 (12)
N3	0.0182 (16)	0.0345 (17)	0.0425 (18)	-0.0092 (13)	0.0116 (13)	-0.0153 (14)
C13	0.0139 (16)	0.0242 (16)	0.0230 (16)	0.0032 (13)	0.0077 (13)	-0.0003 (13)
N4	0.0163 (15)	0.0311 (16)	0.0328 (16)	0.0008 (12)	0.0126 (12)	-0.0051 (13)
C15	0.0126 (16)	0.0225 (16)	0.0221 (16)	-0.0037 (12)	0.0036 (13)	-0.0016 (13)
C14	0.0156 (18)	0.043 (2)	0.044 (2)	-0.0055 (15)	0.0122 (16)	-0.0085 (17)
C27	0.0136 (16)	0.0185 (15)	0.0300 (18)	0.0017 (12)	0.0068 (14)	-0.0032 (13)
C19	0.0158 (16)	0.0151 (14)	0.0239 (16)	0.0016 (12)	0.0066 (13)	-0.0024 (12)
011	0.0307 (14)	0.0418 (15)	0.0373 (14)	-0.0177 (11)	0.0211 (12)	-0.0165 (11)
O10	0.0385 (15)	0.0404 (14)	0.0280 (13)	0.0139 (12)	0.0184 (11)	0.0108 (11)
C17	0.0162 (16)	0.0181 (15)	0.0153 (14)	0.0015 (12)	0.0059 (12)	0.0001 (12)
C12	0.0199 (17)	0.0171 (15)	0.0272 (17)	-0.0006 (13)	0.0108 (14)	-0.0045 (13)
C16	0.0193 (17)	0.0188 (15)	0.0232 (16)	-0.0021 (12)	0.0090 (13)	-0.0043 (13)
C11	0.0144 (16)	0.0189 (15)	0.0205 (15)	-0.0001 (12)	0.0065 (13)	0.0003 (12)
C10	0.0178 (17)	0.0150 (15)	0.0227 (16)	-0.0015 (12)	0.0062 (13)	0.0010 (12)
C18	0.0144 (16)	0.0163 (14)	0.0185 (15)	-0.0019 (12)	0.0062 (12)	-0.0018 (12)
08	0.0202 (12)	0.0202 (11)	0.0221 (11)	0.0063 (9)	0.0070 (9)	0.0064 (9)
O7	0.0288 (13)	0.0343 (13)	0.0225 (12)	0.0150 (10)	0.0151 (10)	0.0088 (10)
05	0.0197 (12)	0.0208 (11)	0.0433 (14)	-0.0069 (9)	0.0155 (11)	-0.0133 (10)
06	0.0162 (12)	0.0223 (11)	0.0380 (13)	-0.0038 (9)	0.0124 (10)	-0.0065 (10)
012	0.0252 (14)	0.0405 (15)	0.0588 (17)	-0.0157 (11)	0.0233 (13)	-0.0302 (13)
C36	0.0173 (17)	0.0195 (15)	0.0186 (15)	-0.0020 (12)	0.0054 (13)	0.0015 (12)
C33	0.0130 (16)	0.0244 (16)	0.0213 (16)	0.0017 (12)	0.0066 (13)	-0.0002 (13)
C35	0.0150 (16)	0.0185 (15)	0.0189 (15)	-0.0016 (12)	0.0053 (13)	-0.0006 (12)
C34	0.0199 (17)	0.0160 (15)	0.0249 (16)	-0.0002 (12)	0.0083 (14)	-0.0042 (12)
016	0.0219 (12)	0.0203 (11)	0.0351 (13)	-0.0064 (9)	0.0136 (10)	-0.0118 (10)
015	0.0281 (14)	0.0341 (13)	0.0422 (15)	-0.0139 (11)	0.0232 (12)	-0.0182 (11)
09	0.0184 (13)	0.0341 (13)	0.0370 (14)	0.0092 (10)	0.0106 (11)	0.0128 (11)
N7	0.0180 (15)	0.0282 (16)	0.0287 (16)	0.0006 (12)	0.0104 (12)	-0.0061 (12)
C28	0.0180 (16)	0.0127 (14)	0.0181 (15)	-0.0019 (12)	0.0052 (13)	-0.0002 (12)
C29	0.0155 (16)	0.0190 (15)	0.0146 (14)	-0.0001 (12)	0.0069 (12)	0.0003 (12)

C32	0.0122 (16)	0.0313 (18)	0.0259 (17)	-0.0018 (13)	0.0053 (13)	0.0008 (14)
O14	0.0258 (13)	0.0289 (12)	0.0184 (11)	0.0076 (10)	0.0097 (10)	0.0039 (9)
N8	0.0121 (14)	0.0244 (15)	0.0276 (15)	-0.0051 (11)	0.0039 (12)	-0.0046 (12)
C31	0.0120 (15)	0.0181 (15)	0.0187 (15)	-0.0029 (12)	0.0024 (12)	0.0000 (12)
C30	0.0177 (17)	0.0180 (15)	0.0216 (16)	-0.0004 (12)	0.0055 (13)	-0.0032 (12)
C1	0.0121 (16)	0.0158 (15)	0.0268 (17)	0.0017 (12)	0.0033 (13)	-0.0022 (12)
C2	0.0141 (16)	0.0158 (15)	0.0229 (16)	0.0003 (12)	0.0057 (13)	0.0001 (12)
O2	0.0235 (13)	0.0260 (12)	0.0282 (12)	-0.0070 (9)	0.0122 (10)	-0.0035 (10)
O1	0.0207 (13)	0.0270 (12)	0.0441 (14)	-0.0100 (10)	0.0186 (11)	-0.0172 (11)
C8	0.0141 (16)	0.0158 (14)	0.0165 (14)	0.0027 (12)	0.0033 (12)	0.0010 (11)
C7	0.0179 (16)	0.0194 (15)	0.0186 (15)	0.0029 (12)	0.0064 (13)	-0.0032 (12)
C4	0.0117 (16)	0.0212 (15)	0.0188 (15)	0.0003 (12)	0.0035 (12)	-0.0029 (12)
C6	0.0144 (16)	0.0192 (15)	0.0166 (15)	-0.0001 (12)	0.0029 (12)	-0.0004 (12)
C3	0.0138 (16)	0.0159 (15)	0.0276 (17)	0.0003 (12)	0.0057 (13)	-0.0060 (12)
N1	0.0104 (13)	0.0228 (13)	0.0229 (13)	-0.0027 (10)	0.0038 (11)	-0.0038 (11)
N2	0.0166 (14)	0.0196 (14)	0.0282 (15)	-0.0033 (11)	0.0060 (12)	-0.0092 (12)
C5	0.0154 (16)	0.0241 (16)	0.0240 (16)	-0.0015 (13)	0.0075 (13)	-0.0015 (13)
C9	0.0161 (16)	0.0110 (14)	0.0235 (16)	0.0036 (11)	0.0077 (13)	0.0013 (12)
O4	0.0261 (13)	0.0288 (12)	0.0214 (11)	0.0088 (10)	0.0128 (10)	0.0055 (9)
O13	0.0208 (12)	0.0322 (13)	0.0224 (12)	0.0071 (10)	0.0084 (10)	0.0112 (10)
O3	0.0131 (11)	0.0248 (11)	0.0218 (11)	0.0054 (9)	0.0038 (9)	0.0013 (9)
O1W	0.0313 (14)	0.0279 (12)	0.0216 (12)	-0.0129 (10)	0.0108 (10)	0.0001 (9)
O2W	0.0307 (14)	0.0532 (16)	0.0215 (12)	-0.0001 (12)	0.0108 (11)	-0.0028 (11)

Geometric parameters (Å, °)

Gd1—O1	2.338 (2)	С16—Н16	0.9300
Gd1—O2	2.526 (2)	C11—C10	1.495 (4)
Gd1—O3 ⁱ	2.350 (2)	C10—O6	1.247 (4)
Gd1—O5 ⁱⁱ	2.461 (2)	C10—O5	1.278 (4)
Gd1—O6 ⁱⁱ	2.499 (2)	C18—O7	1.247 (4)
Gd1—O8	2.314 (2)	C18—O8	1.255 (3)
Gd1—N6	2.617 (3)	C36—O15	1.248 (4)
Gd1—O1W	2.374 (2)	C36—O16	1.271 (4)
Gd2—O9	2.312 (2)	C36—C35	1.491 (4)
Gd2—O11 ⁱⁱⁱ	2.539 (2)	C33—C34	1.385 (4)
Gd2—O12 ⁱⁱⁱ	2.342 (2)	C33—N7	1.387 (4)
Gd2—O13 ^{iv}	2.267 (2)	C33—C31	1.393 (4)
Gd2—O15	2.449 (2)	C35—C34	1.388 (4)
Gd2—O16	2.520 (2)	C35—C29	1.424 (4)
Gd2—N1 ⁱⁱⁱ	2.612 (3)	C34—H34	0.9300
Gd2—O2W	2.384 (2)	N7—C32	1.323 (4)
N6—C23	1.316 (4)	N7—H7A	0.77 (4)
N6—C24	1.407 (4)	C28—O14	1.236 (4)
N5—C23	1.343 (4)	C28—O13	1.272 (4)
N5—C22	1.372 (4)	C28—C29	1.516 (4)
N5—H5A	0.83 (4)	C29—C30	1.380 (4)
С23—Н23	0.9300	C32—N8	1.316 (4)

C25—C24	1.389 (4)	С32—Н32	0.9300
C25—C26	1.391 (4)	N8—C31	1.382 (4)
C25—H25	0.9300	N8—H8A	0.80 (4)
C21—C20	1.385 (4)	C31—C30	1.390 (4)
C21—C22	1.390 (4)	С30—Н30	0.9300
C21—H21	0.9300	C1—O2	1.247 (4)
C24—C22	1.400 (4)	C1—O1	1.281 (4)
C20—C26	1.411 (4)	C1—C2	1.502 (4)
C20—C19	1.504 (4)	C2—C3	1.380 (4)
C26—C27	1.498 (4)	C2—C8	1.420 (4)
N3—C14	1.314 (4)	C8—C7	1.378 (4)
N3—C15	1.378 (4)	C8—C9	1.510 (4)
N3—H3A	0.81 (4)	С7—С6	1.396 (4)
C13—C12	1.383 (4)	С7—Н7	0.9300
C13—N4	1.391 (4)	C4—C3	1.392 (4)
C13—C15	1.392 (4)	C4—C6	1.400 (4)
N4—C14	1.313 (4)	C4—N1	1.403 (4)
N4—H4A	0.84 (4)	C6—N2	1.378 (4)
C15—C16	1.387 (4)	С3—Н3	0.9300
C14—H14	0.9300	NI-C5	1.315 (4)
	1.245 (4)	N2—C5	1.345 (4)
$C_{2} = 012$	1.270 (4)	N2—H2A	0.82 (4)
C19-C10	1.231(4)	Сэ—пэ	0.9500
	1.231(4)	C9-04	1.232(4)
011—Gd2"	2.539 (2)	C9—03	1.200 (4)
	1.378 (4)	Olw_HIW	0.84
C17—C11	1.420 (4)	Olw_H2w	0.82
C12 - C11	1.313(4) 1.396(4)	$O_2 W = H_3 W$	0.80
C12—C11 C12—H12	0.0300	O2W H4WR	0.82
	0.7500		124.0
08—Gdl—Ol	107.71 (8)	N3-C14-H14	124.8
O8—Gd1—O3 ¹	80.39 (7)	011	120.5 (3)
$O1$ — $Gd1$ — $O3^1$	156.84 (7)	O11—C27—C26	122.0 (3)
O8—Gd1—O1W	150.83 (7)	O12—C27—C26	117.5 (3)
O1—Gd1—O1W	89.84 (8)	O11—C27—Gd2 ^{iv}	64.70 (17)
O3 ⁱ —Gd1—O1W	75.13 (7)	O12—C27—Gd2 ^{iv}	55.80 (16)
O8—Gd1—O5 ⁱⁱ	91.14 (7)	C26—C27—Gd2 ^{iv}	173.3 (2)
O1—Gd1—O5 ⁱⁱ	127.16 (7)	O10—C19—O9	124.2 (3)
O3 ⁱ —Gd1—O5 ⁱⁱ	72.98 (7)	O10—C19—C20	117.1 (3)
O1W—Gd1—O5 ⁱⁱ	96.56 (8)	O9—C19—C20	118.6 (3)
O8—Gd1—O6 ⁱⁱ	133.85 (7)	C27—O11—Gd2 ^{iv}	88.98 (18)
01—Gd1—O6 ⁱⁱ	81.62 (8)	C16—C17—C11	121.3 (3)
O3 ⁱ —Gd1—O6 ⁱⁱ	108.82 (7)	C16—C17—C18	115.8 (3)
O1W—Gd1—O6 ⁱⁱ	70.40 (8)	C11—C17—C18	123.0 (3)
O5 ⁱⁱ —Gd1—O6 ⁱⁱ	52.51 (7)	C13—C12—C11	117.9 (3)
O8—Gd1—O2	77.02 (7)	С13—С12—Н12	121.1

O1—Gd1—O2	53.69 (7)	C11—C12—H12	121.1
O3 ⁱ —Gd1—O2	148.38 (7)	C17—C16—C15	117.1 (3)
O1W—Gd1—O2	131.50 (7)	C17—C16—H16	121.4
O5 ⁱⁱ —Gd1—O2	85.58 (8)	C15—C16—H16	121.4
O6 ⁱⁱ —Gd1—O2	73.23 (7)	C12—C11—C17	120.6 (3)
O8—Gd1—N6	87.31 (8)	C12-C11-C10	118.5 (3)
O1—Gd1—N6	78.24 (8)	C17—C11—C10	120.9 (3)
O3 ⁱ —Gd1—N6	80.57 (8)	O6—C10—O5	120.7 (3)
O1W—Gd1—N6	73.35 (8)	O6—C10—C11	120.3 (3)
O5 ⁱⁱ —Gd1—N6	153.38 (8)	O5—C10—C11	118.9 (3)
O6 ⁱⁱ —Gd1—N6	138.26 (8)	O6—C10—Gd1 ⁱ	61.93 (15)
O2—Gd1—N6	119.76 (8)	O5—C10—Gd1 ⁱ	60.23 (15)
O8—Gd1—C10 ⁱⁱ	115.53 (8)	C11—C10—Gd1 ⁱ	167.3 (2)
O1—Gd1—C10 ⁱⁱ	106.09 (8)	O7—C18—O8	124.7 (3)
O3 ⁱ —Gd1—C10 ⁱⁱ	88.80 (8)	O7—C18—C17	117.4 (3)
O1W—Gd1—C10 ⁱⁱ	79.89 (8)	O8—C18—C17	117.8 (3)
O5 ⁱⁱ —Gd1—C10 ⁱⁱ	26.78 (8)	C18—O8—Gd1	148.6 (2)
O6 ⁱⁱ —Gd1—C10 ⁱⁱ	26.11 (8)	C10—O5—Gd1 ⁱ	92.99 (18)
O2—Gd1—C10 ⁱⁱ	81.39 (8)	C10—O6—Gd1 ⁱ	91.96 (17)
N6—Gd1—C10 ⁱⁱ	152.92 (8)	C27—O12—Gd2 ^{iv}	97.54 (19)
O13 ^{iv} —Gd2—O9	87.94 (8)	O15—C36—O16	120.3 (3)
O13 ^{iv} —Gd2—O12 ⁱⁱⁱ	107.11 (9)	O15—C36—C35	119.2 (3)
09—Gd2—O12 ⁱⁱⁱ	152.90 (8)	O16—C36—C35	120.5 (3)
O13 ^{iv} —Gd2—O2W	153.97 (8)	C34—C33—N7	132.7 (3)
O9—Gd2—O2W	79.66 (9)	C34—C33—C31	121.1 (3)
O12 ⁱⁱⁱ —Gd2—O2W	77.24 (9)	N7—C33—C31	106.1 (3)
O13 ^{iv} —Gd2—O15	136.70 (8)	C34—C35—C29	120.9 (3)
O9—Gd2—O15	98.56 (8)	C34—C35—C36	118.6 (3)
O12 ⁱⁱⁱ —Gd2—O15	85.94 (9)	C29—C35—C36	120.6 (3)
O2W—Gd2—O15	68.38 (8)	C33—C34—C35	117.8 (3)
O13 ^{iv} —Gd2—O16	89.20 (7)	С33—С34—Н34	121.1
O9—Gd2—O16	75.74 (8)	С35—С34—Н34	121.1
O12 ⁱⁱⁱ —Gd2—O16	125.56 (8)	C36—O16—Gd2	91.50 (18)
O2W—Gd2—O16	109.44 (8)	C36—O15—Gd2	95.47 (18)
O15—Gd2—O16	52.14 (7)	C19—O9—Gd2	168.9 (2)
$O13^{iv}$ —Gd2— $O11^{iii}$	80.34 (8)	C32—N7—C33	108.5 (3)
O9—Gd2—O11 ⁱⁱⁱ	153.99 (8)	C32—N7—H7A	129 (3)
O12 ⁱⁱⁱ —Gd2—O11 ⁱⁱⁱ	52.97 (8)	C33—N7—H7A	123 (3)
O2W—Gd2—O11 ⁱⁱⁱ	119.51 (8)	O14—C28—O13	123.9 (3)
O15—Gd2—O11 ⁱⁱⁱ	75.38 (9)	O14—C28—C29	119.9 (3)
O16-Gd2-O11 ⁱⁱⁱ	80.92 (8)	O13—C28—C29	116.1 (3)
O13 ^{iv} —Gd2—N1 ⁱⁱⁱ	82.99 (8)	C30—C29—C35	120.7 (3)

O9—Gd2—N1 ⁱⁱⁱ	79.84 (8)	C30—C29—C28	116.4 (3)
O12 ⁱⁱⁱ —Gd2—N1 ⁱⁱⁱ	79.83 (8)	C35—C29—C28	122.8 (3)
O2W—Gd2—N1 ⁱⁱⁱ	72.39 (8)	N8—C32—N7	110.4 (3)
O15—Gd2—N1 ⁱⁱⁱ	140.32 (8)	N8—C32—H32	124.8
O16—Gd2—N1 ⁱⁱⁱ	154.59 (7)	N7—C32—H32	124.8
O11 ⁱⁱⁱ —Gd2—N1 ⁱⁱⁱ	121.11 (8)	C32—N8—C31	108.8 (3)
O13 ^{iv} —Gd2—C27 ⁱⁱⁱ	93.85 (9)	C32—N8—H8A	122 (3)
O9—Gd2—C27 ⁱⁱⁱ	178.09 (9)	C31—N8—H8A	130 (3)
O12 ⁱⁱⁱ —Gd2—C27 ⁱⁱⁱ	26.65 (9)	N8—C31—C30	131.9 (3)
Ω^2W —Gd2—C27 ⁱⁱⁱ	98.94 (9)	N8—C31—C33	106.3 (3)
$015-Gd2-C27^{iii}$	79 68 (9)	C30—C31—C33	1217(3)
015 - 012 - 027	103 62 (8)	C_{29} C_{30} C_{31}	121.7(3)
	105.02(8)	C_{2}^{2} C_{3}^{2} U_{2}^{2}	121.1
OII Gd2C27	20.52 (8)	C29—C30—H30	121.1
$N1^{m}$ —Gd2—C27 ^m	101.01 (8)	C31—C30—H30	121.1
C23—N6—C24	104.1 (3)	02	121.3 (3)
C23—N6—Gdl	120.7 (2)	02	121.7 (3)
C24—N6—Gd1	132.91 (19)	01	117.0 (3)
C23—N5—C22	107.6 (3)	C3—C2—C8	121.1 (3)
C23—N5—H5A	126 (3)	C3—C2—C1	117.9 (3)
C22—N5—H5A	127 (3)	C8—C2—C1	121.0 (3)
N6—C23—N5	113.7 (3)	C1—O2—Gd1	88.55 (18)
N6—C23—H23	123.1	C1—O1—Gd1	96.42 (18)
N5—C23—H23	123.1	C7—C8—C2	120.3 (3)
C24—C25—C26	119.0 (3)	C7—C8—C9	117.6 (3)
C24—C25—H25	120.5	C2—C8—C9	121.6 (3)
С26—С25—Н25	120.5	C8—C7—C6	118.0 (3)
C20—C21—C22	117.9 (3)	С8—С7—Н7	121.0
C20-C21-H21	121.1	С6—С7—Н7	121.0
C22—C21—H21	121.1	C3—C4—C6	119.5 (3)
C25—C24—C22	119.3 (3)	C3—C4—N1	130.8 (3)
C25—C24—N6	131.4 (3)	C6—C4—N1	109.6 (3)
C22—C24—N6	109.2 (3)	N2—C6—C7	132.6 (3)
N5-C22-C21	132.2 (3)	N2—C6—C4	105.3 (3)
N5-C22-C24	105.3 (3)	C7—C6—C4	122.1 (3)
C21—C22—C24	122.4 (3)	C2—C3—C4	118.9 (3)
C21—C20—C26	120.4 (3)	С2—С3—Н3	120.5
C21—C20—C19	117.2 (3)	С4—С3—Н3	120.5
C26—C20—C19	122.3 (3)	C5—N1—C4	103.9 (2)
C25—C26—C20	120.9 (3)	$C5-N1-Gd2^{iv}$	122.2 (2)
C25—C26—C27	117.3 (3)	$C4$ —N1— $Gd2^{iv}$	132.34 (19)
C20—C26—C27	1217(3)	$C_5 = N_2 = C_6$	106 9 (3)
C14—N3—C15	109 0 (3)	C5—N2—H2A	127 (3)
C14—N3—H3A	128 (3)	C6—N2—H2A	126 (3)
C15_N3_H3A	123 (3)	N1-C5-N2	1143(3)
C12_C13N/	122 (3)	N1_C5_H5	122.0
C_{12} C_{13} C_{14} C_{15} C_{15}	152.7(3)	N2 C5 U5	122.7
C12-C13-C13	121.0 (3)	INZ	122.9

N4—C13—C15	106.1 (3)	O4—C9—O3	124.8 (3)
C14—N4—C13	108.4 (3)	O4—C9—C8	118.8 (3)
C14—N4—H4A	127 (3)	O3—C9—C8	116.3 (3)
C13—N4—H4A	124 (3)	C28—O13—Gd2 ⁱⁱⁱ	151.0 (2)
N3—C15—C16	131.9 (3)	C9—O3—Gd1 ⁱⁱ	135.77 (18)
N3-C15-C13	106.0 (3)	H1W—O1W—H2W	108
C16—C15—C13	122.1 (3)	H3W—O2W—H4WA	106
N4-C14-N3	110.4 (3)	H3W—O2W—H4WB	105
N4—C14—H14	124.8		

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) -x, y+1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) -x+1, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
O1W—H1W····O7 ^v	0.84	1.80	2.629 (3)	167
O1W—H2W····O4 ⁱ	0.82	1.92	2.670 (3)	153
O2W—H3W····O10 ^{vi}	0.86	1.74	2.590 (3)	172
O2W—H4WA···O15	0.82	2.14	2.716 (5)	127
O2W—H4WB···O2W ^{vi}	0.82	1.91	2.723 (4)	170
N2—H2A····O14 ^{vii}	0.82 (4)	1.94 (4)	2.742 (3)	169 (3)
N3—H3A···O10 ^{vii}	0.81 (4)	1.94 (4)	2.731 (4)	166 (4)
N4—H4A…O16	0.84 (4)	1.97 (4)	2.801 (4)	170 (4)
N5—H5A····O4 ^v	0.83 (4)	1.96 (4)	2.772 (3)	165 (4)
N7—H7A…O5	0.77 (4)	2.08 (4)	2.845 (3)	171 (4)
N8—H8A…O7 ^{viii}	0.80 (4)	1.95 (4)	2.747 (3)	172 (4)

Symmetry codes: (v) x, -y+1/2, z-1/2; (i) -x, y-1/2, -z+1/2; (vi) -x+1, -y, -z; (vii) x, -y+1/2, z+1/2; (viii) x, -y-1/2, z-1/2.

Fig. 1

